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MICRO-614: Electrochemical Nano-Bio-Sensing 
and Bio/CMOS interfaces 

Lecture #13
CMOS interfaces 
for DNA Detection
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• CMOS for capacitance 
detection

• Charge-Based Capacitance 
Measurement (CBCM) 
Method

• Frequency-to-Capacitance 
Measurement (FTCM) 
Method

Lecture Outline
(Book Bio/CMOS: Chapter 13
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CMOS architectures for VLSI

in DNA Detection
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The Capacitance DNA Detection
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Unlabeled ssDNA may be detected with capacitance 
measurements as due to charge displacement
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Method for a precise Capacitance measurement

THE CAPACITANCE !

Frequency!

Current Based Capacitance 
Measurement (CBCM)
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The circuit assures the square signal generator, an inverters, 
and an integrator to calculate the average current

CMOS for CBCM detection
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The Chip Electrodes Layout
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The VLSI Implementation of 
the Chip (CBCM method)

(CBCM = Charge Base Capacitance Mode)
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Ck and Ck_ signals need to be not-overlapping in 
order to assure the correct square signal generation

The problem of overlapping signals
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A simple logical circuit and a digital multiplexer 
assures not-overlapping Ck and Ck_ signals

The circuit solution
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The Measurements Set-up

The Chip has been mounted onto a PCB for PC 
remote control and testing
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Liquid Measurement set-up

Chip is glued on a PCB

Bonding wiresOutput PCB pads

Fluidic cell

Two different 
Chambers 

1mmX1mm
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The chip-by-chip reproducibility has been not so high: 
the problem is on the chip electrodes cleaning

DNA detection in CBCM mode

Large differences in C values
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The trends of the measured capacitance vs 
frequency decrease the accuracy of the 

measurements in CBCM mode

Capacitance vs Frequency
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DNA Layer is independent by the frequency thanks 
to probes immobilized on Ethylene-Glycol Thiols

Good DNA Layer

Almost constant in frequency
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CBCM method on a DNA Layer that is 
independents by the frequency

CBCM on good DNA Layer

Good agreement
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DNA Layer is dependent by the frequency since the 
monolayer is not extremely well formed

Bad DNA Layer

Highly depending by the frequency
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CBCM method on a DNA Layer that
dependents by the frequency

CBCM on bad DNA Layer

Bad agreement
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The reproducibility on the same chip-spot 
is not so high: here the problem is on the 

nano-scale aperture in the probes 
surfaces

DNA detection in CBCM mode

Large Standard deviation
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Linear behavior

Frequency to Capacitance 
Measurement  (FTCM)

Principle: Frequency To Capacitance Mode
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Current Based Capacitance 
Measurement (CBCM)
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Linearity by approximation in the right range of values

The Taylor Series



(c) S.Carrara 23

Method for the estimation of the Capacitance

Current Based Capacitance 
Measurement (CBCM)
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Linear behavior

Frequency to Capacitance 
Measurement  (FTCM)
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Electrodes Layout
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Chip Architecture (FTCM)
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Measurements Set-up
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Validation Test

A test structure has been implemented on chip beside the
array to characterize the measurement circuit with
discrete test capacitances (10 pF -10 nF)

Slope = 0.9837
Intercept = 62 pF 
s < 0,3 %

Offset is due to parasitic 
capacitances of cables
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The linearity between the current and the measured 
frequency is lost at low current if the CMOS/Bio 

interface is not a perfect capacitor

Probes property on FTCM mode

Rp decreasing
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Liquid Measurement set-up
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Time stability on the single chip-spot is pour due 
to nano-scale aperture in the probes surfaces

DNA detection in FTCM mode
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In chip spot-by-spot reproducibility is improved 
due to better cleaning of the spot gold electrodes

DNA detection in FTCM mode
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Electrochemical labels might be used to detect DNA

Amperometric Detection of DNA
Figure by Frey et al, IEEE ISCAS 2015
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Redox species can be then measured at the electrodes

Amperometric Detection of DNA
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Amperometric Detection Principle
How it works:

ü First, single stranded DNA molecules (about 20 bases) 
are immobilized by using a spotting machine on top of the 
gold electrodes due to gold-thiol coupling. 

ü Then, the chip is flooded with an analyte containing 
labeled target DNA ss: hybridization takes place in case 
of matching.

ü A suitable substrate is applied to the buffer solution and 
it is enzymatically cleaved by the label. 
üResulting species starts an electrochemical redox 

process at the electrodes. 
üFaradaic currents generated by the related redox 
process is detected and transduces DNA hybridization 
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Enzymatically cleavage 
& redox process

ü The label cleaves the 

secondary probe

ü The product of the 

cleavage is generating an 
oxidation process at the 
anode and, once 

oxidized, a reduction at 
the cathode
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A 4-electrode Electrochemical Cell is here required

The Electrochemical Cell
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4

VG & VC
have to be 
different 
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Cyclic Voltammetry

ü Typical Cyclic Voltammetry 

acquired with 3-electrode cell

ü Chronoamperometry acquired with 

4-electrode cell

VGVC

Simultaneous acquisition of Ox/Red current with 4-el
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Successful detection of the matching sequence by 
significant signal by non-matching ones too

Match/Mismatch DNA Hybridization



duplex Experimental
DG [kJ/mol]

GGTTATTGG
CCAATAACC

-26.8

GGTTCTTGG
CCAAGAACC

-31.4

GGTTTTTGG
CCAAAAACC

-29.5

GGTTATTGG
CCAAAAACC

-12.0

GGTTCTTGG
CCAATAACC

-12.4

GGTTTTTGG
CCAAGAACC

-17.5

Gibbs free energy for Match/Mismatch

40(c) S.Carrara

Roughly 
50% less
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Successful detection of the matching sequences 
but significant signal by non-matching too

Match/Mismatch DNA Hybridization

Roughly 
50% less
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Frequency-To-Current Conversion (FTCC) 
method is used here too

Current CMOS Readout
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Current CMOS Readout

Sensor-site circuit architecture with digital output
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Whole Chip architecture including Row/Column decoders

Array Architecture
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Chip microphotograph. Total dimensions are 6.4 x 4.5 mm2.

The realized IC
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Electrochemical electrodes are created on top of the 
last CMOS metal Al layer

Exposed IC-Die Electrodes
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Measured count rate of all 128 DNA sensors

Frequency Readout
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Response of the sensor versus secondary probe

Test Measures

Current at Generator electrode 

Current at Collector electrode 

Response Calibration 

Concentration of the secondary probe, not of the DNA 
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Row 8: full matching DNA, row 7: full mismatching 
DNA, all other positions not functionalized.

DNA Detection
Full-matching DNA

Full-mismatching DNA

Non-functionalized pixels
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Impedimetric Sensing

Clearly, the impedance of the Bio/CMOS interface 
changes accordingly to molecular steric hindrance

Acquired Signal !

ELECTROCHEMICAL LABEL



Equivalent Impedance

The Layering effects result in the impedance in parallel
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Nyquist plots: I-bare ; II-Antibodies ; and III-uptake 
with CEA (CarcinoEmbryonic Antigen)

Impedimetric Sensing of CEA
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Impedimetric Sensing

Real

Imaginary
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(c) S.Carrara
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Impedimetric Sensing

∫

∫

+90°
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Impedimetric Sensing
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Impedimetric Sensing

Voltage mixer and its simplest 
implementation with CMOS transistors 
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Impedimetric Sensing

Voltage mixer implemented with
a single-balanced mixer



S.Carrara, EPFL Lausanne 
(Switzerland)

58

Impedimetric Sensing

Simplest possible phase shifter


